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We perform a detailed study of the time evolution of the probability distribution 
for two processes displaying enhanced diffusion: a stochastic process named the 
Lrvy walk and a deterministic chaotic process, the amplified climbing-sine map. 
The time evolution of the probability distribution differs in the two cases and 
carries information which is peculiar to the investigated process. 
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1. I N T R O D U C T I O N  

In recent years, many studies has been devoted to dynamical processes 
displaying anomalous diffusion. (1-5) In these processes the mean square 
displacement ( r 2 ( t ) )  shows a time dependence which differs from the 
linear dependence ( r 2 ( t ) )  w. t observed for the simple Gaussian Brownian 
motion. (3'6) Anomalous diffusion is characterized by 

( r Z ( t ) )  ~ t '~ (1) 

with m r 1. A subdiffusive behavior (i.e., rn < 1) has been observed in 
systems with geometric constrains (disordered systems, (I) diffusion in 
convective rolls, (7) fractals, (4~ etc.), whereas enhanced ~tiffusion (m > 1) is 
typical for intermittent dynamical systems (s-l~ and turbulence. (1~'~2) Apart 
from the turbulence, enhanced diffusion has been also detected in polymer- 
like (13) and economic (~4) systems. 
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In this paper we report a detailed study on the time evolution of the 
probability P(r, t) that a particle is at position r at time t for two different 
physical models displaying enhanced diffusion. The first is a stochastic 
model named the Lrvy walk, (2' ~5,~6) while the second is a chaotic system, 
the amplified climbing-sine map. (9~ Both models were originally proposed 
to describe fully developed turbulence. The study of the time evolution of 
the probability P(r, t) is relevant for processes displaying anomalous diffu- 
sion. In fact, for processes with normal diffusion the P(r, t) distribution is 
expected to be Gaussian, while in the presence of anomalous diffusion a 
large variety of distributions can be observed. In the presence of anomalous 
diffusion we can have L~vy distributions (3'6'17'~8~ or we can observe 
Gaussian distributions with the variance growing more than linearly with 
time (~9'2~ or a leptokurtic probability distribution with fine structure for a 
chaotic intermittent diffusive evolution. ~8-~~ all these cases the probabil- 
ity distributions carry information which is peculiar to the '  model 
investigated. The knowledge of these peculiarities for the different models 
can help in the interpretation of experimental data showing enhanced diffu- 
sion. In this paper, our main aim is to show that a detailed analysis of the 
time evolution of the probability distribution provides useful information 
for the identification of the model better describing a set of experimental 
data displaying enhanced diffusion. In particular we show the probability 
P(r, t) is different for the two studied processes, especially in the important 
region P(0, t), even if the mean square displacement shows the same time 
dependence. 

In the next section we study, in detail, the time evolution of the 
probability distribution of the stochastic process named the Lrvy walk 
in the presence of enhanced diffusion. In Section 3 we perform a similar 
analysis on the time evolution of the probability distribution of the 
amplified climbing-sine map. We discuss and compare the obtained results 
in the last section. 

2. LEVY WALKS 

A Brownian motion for which the probability distribution P(r, t) is a 
Lrvy t3'6"~7'18) (or stable) non-Gaussian distribution for every r and t is 
called a Lrvy flight, t18) A stable distribution of index ~ is the probability 
distribution of any linear combination of n independent random variables 
x , ,  each of them characterized by the same probability distribution p(x) 
decreasing as x -~1+') for large x, when n tends to infinity. Lrvy showed 
that this property, familiar for Gaussian variables (stable distribution 
characterized by ~ = 2), is in fact valid for a wider ensemble of stochastic 
variables (characterized by 0 < ~ < 2) if one releases the hypothesis of finite 
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second moment. ~7~ The Lrvy distribution can be symmetrical or asym- 
metrical, depending on a control parameter. In this paper for the sake of 
simplicity we deal only with symmetrical Lrvy distributions. Symmetrical 
Lrvy distributions with zero mean are defined by 

P~(r, t) = ~z - 1 exp( - 7l tk=) cos(kr) dk (2) 

The parameter :~ characterizes the Lrvy distribution, while 7x defines the 
time scale. Apart from the case c~ = 2 (Gaussian distribution), a Lrvy dis- 
tribution of order e has moments ( r  n > diverging for n > e. For this reason 
Lrvy flights have second moment diverging at every time ( r2( t )> = or. 

Lrvy walks are stochastic processes where spatial jumps of arbitrary 
length (as for Lrvy flights) are allowed but long steps are penalized by 
requiring a longer time to be performed. This is achieved by imposing a 
spatiotemporal coupling in the probability ~b(r, t), i.e., the probability 
density that a transition displacement r occurs at a time t after the previous 
transition. A suitable function is (21' 22) 

~(r, t) = A r - g 6 ( r  - t v) (3) 

The presence of a coupled spatiotemporal memory makes it possible to 
observe the second moment at finite times. Moreover, for a wide interval 
of the control parameters k~ and v this process shows enhanced diffu- 
sion. (z':~'22) Below we present the results of our numerical simulations of 
Lrvy walks characterized by the spatiotemporal coupling memory of 
Eq. (3). We perform numerical simulations in one dimension by following 
the procedure proposed in ref. 21. The time evolution of the walker r( t)  is 
obtained by generating a random distance r distributed as 

qk(r ) = f o  dt O(r, t) = Cr - ~ +  1- i/v) (4) 

and imposing that the time needed to travel this distance is given by 
t =  Irl ~/~ in agreement with Eq. (3). A typical realization of the process 
(characterized by # = 2 . 0  and v=  1.5) is given in.Fig. 1. By studying the 
time evolution of the mean square displacement <ra(t)> for v = 1.5 and for 
several values of the control parameter p belonging to the range [1, 4] we 
observe, in agreement with previous studies, (2~) the mean square displace- 
ment <r2(t)> proportional to t '~ with m greater than 1 for # <  (1 + 2 v ) / v  
(it <2.66 for v=  1.5). The results of our investigations are collected in 
Fig. 2. After the check that  the system displays enhanced diffusion for an 
appropriate choice of the control parameters, we study in detail the line 
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Single realization of the time evolution of the one-dimensional L~vy walk charac- 
terized by p = 2.0 and v = 1.5. 

shape of the probability distribution P(r, t) as a function of the control 
parameter # at different times. Our results show that the central part of 
P(r, t) has a L6vy shape for 2Iv<# < (1 + 2v)/v even for finite times and 
moreover the convergence to the L6vy shape is higher for longer times in 
the wings of distributions. In Fig. 3 we show the P(r, t) observed for # = 2.0 
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Fig. 2. L6vy walks simulated for v = 1.5 and for several different values of the control 
parameter #. The diffusion exponent m of the mean square displacement (S7) and the order 

of the L6vy stable distribution ( z5 ) describing the central region of the probability distribu- 
tion are given as a function of the control parameter #. The dashed line is the theoretical 
prediction for the diffusion exponent obtained in ref. 21 [Eq. (13)1 and the full line is the plot 
of Eq. (9). Both curves are plotted for v = 1.5. 
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Fig. 3. Logarithm of the probability distribution ([~) obtained by collecting l0 s different 
realizations of a L~vy walk characterized by # = 2.0, v = 1.5, and t = 100. The full line is a 
L~vy stable distribution with ~ = 1.36 and 71 t = 100. The agreement between the two curves 
is very good for more than two decades from the maxima of the curves. 

and v = 1.5 at t =  100. The distr ibution function is obta ined  by analyzing 
the time evolution of  105 different realizations. In the same figure we report  
a L+vy stable distr ibution of order  c~ = 1.36 and 0)~ t = 100 (see below for 
the determination of  the parameters  c~ and "tl). The agreement  between 
the two curves is quite remarkable,  especially in the central  par t  o f  the 
distribution. 

In our  simulations, for each value of  the parameter/ . t  we collect a set 
of  P(r, t). The collection of a sufficient number  of  P(0, t) allows us the 
determinat ion of  the characterizing parameter  7 with an high degree of  
accuracy. The me thod  is the following: we hypothesize that  a large par t  
of  the probabil i ty distribution of ou r  process is well described by a L~vy 
shape (Fig. 3) and we observe that  for L+vy distributions 

P=(O, t) - ~c~(~l t)l/~ (5) 

where F(x)  is the g a m m a  function and ~ is a parameter  characterizing 
the distribution P,(0 ,  1). The time dependence of P=(0, t) is a power- law 
dependence for L6vy distributions [Eq.  (5)]. Under  this hypothesis,  by 
s tudying the time evolut ion of  log(P(0,  t)) as a function of  log(t), we can 
obtain  the parameter  e characterizing the process for the selected values of  
the control  parameters /~ and v. In  Fig. 4 we show a log-log plot of  P(0,  t) 
as a function of  time for a Lrvy  walk characterized by # = 2.0 and v = 1.5. 
F r o m  the plot it is evident that  the time dependence o f  P(O, t) is a power-  
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Fig. 4. Log-log plot of the probability of returning to the origin P(0, t) as a function of the 
time for a IAvy walk (# = 2.0, v = 1.5). Squares are the results of simulation (105 realizations) 
and the dotted line is the best linear fitting of the last five points. From the slope (slope = 
-0.735) of the linear fitting we obtain the value of the parameter c~ (~ = - I/slope = 1.36) 
characterizing the simulated L6vy walk. 

law dependence after a brief period of time (ensuring convergence of the 
central part  of the distribution to a Lrvy  shape). From the log-log plot of 
the P(0, t) data we determine the parameter  ~ by best linear fitting of the 
data (Fig. 4). The 71 parameter  is obtained by solving Eq. (5) with the 
obtained value of ~ at a time t* ensuring the convergence of the central 
part  of the distribution P(0, t*) to a Lrvy shape. The values of the 
parameters  ~ and 71 obtained by this procedure are then used to describe 
the entire P(r, t) for each family of simulations. With this test we check the 
validity of  the assumption of Lrvy shape used to write down Eq. (5). In this 
analysis the parameter  y characterizing a distribution at the time t is 
related to the parameter  71 through the relation 7 = Y l t  [Eq. (2)]. We are 
able to describe with only ~ and Y l parameters  and with an increasing 
accuracy in t ime the entire set of probabil i ty distributions P(r, t) obtained 
by simulating the process for the selected couple of values of the control 
parameters/~ and v (Fig. 5a). The agreement between the simulated P(r, t) 
and the calculated P=(r, t) is quite remarkable  over a wide range of the 
variable r around the origin (Fig. 5a). This result clearly show that the 
hypothesis that  the central part  of the probability distribution is well 
described by a Lrvy distribution is a good hypothesis. 

The values of the parameter  c~ obtained by this procedure are showed 
in Fig. 2. In our simulations we set v = 1.5 and we investigate the behavior 
of the Lrvy walks for several different values of the parameter  #. Our 
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Fig. 5. L~vy walk characterized by # = 2.0 and v = 1.5. (a) Family of probability distribu- 
tions obtained at different times ( t =  30, 100, 300, and 1000). Noisy lines are the results of 
simulation (10 s realizations), while smooth lines are ]_kvy stable distributions of order ct = 1.36 
and ), = Yl t with 71 = 1.00. The plot is logarithmic to evidence the behavior of the wings of dis- 
tributions. The agreement between simulated distributions and L6vy distributions of order 
c~ = 1.36 is excellent in the investigated spatial range. (b) The same probability distributions 
as in (a) plus the distributions observed for t = 1, 3, and 10 presented in scaled units, r ,=r/ t  TM 

and P,(r,, t )= tu=P(rs ,  t). The distributions converge to the L6vy distribution of order 
ct=1.36 (full smooth line) for t>~30 in the investigated range of the scaled position 
[ -  16, 16]. Moreover, the probability distributions obtained for t = 1, 3, and 10 display wings 
each of which is decreasing more rapidly than expected for the L6vy distribution of order ~. 
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method also provides a way to study the convergence in time of the 
distribution P(r, t) to a Lrvy distribution P=(r, t). We observe that Lbvy 
stable distributions follow the scaling relation 

P=(r, 71) 
P~( tl/=r, ~1 t) = t~/~ (6) 

so that the study of the convergence to a Lrvy shape is facilitated if we 
plot P(r, t) in the scaled units G = r~ tl/= and P~(G, t) = tl/=P(r,, t). After the 
determination of the parameter c~ for each family of probability distribu- 
tions, we plot each set of distributions in terms of the defined scaled units. 
A family of scaled probability distributions is showed in Fig. 5b. It is the 
same family already plotted in Fig. 5a with in addition the probability dis- 
tributions observed for t = 1, 3, and 10. From the figure we note that the 
probability distribution converges quite quickly to the Lrvy distribution of 
order e = 1.36 (smooth line in the scaled plot) in the central part, whereas 
the convergence on the wings is observed for longer times. Our numerical 
results show also that the convergence is quicker for processes charac- 
terized by higher values of the parameter e. 

We interpret our numerical results by using some theoretical results 
presented in ref. 22. In ref. 22 the authors show that the Laplace-Fourier 
transform of the stepping probability [Eq. (3)] 

q) (k ,u )=A ~ d t e - i k r - ' f ( r - - t V ) r - U  (7) 
r 

in the region k >> u can be expressed for #v > 2 as 

c~(k, u) = 1 - C ~ u -  C2k ~ (8) 

with 

:t = min ( (#v -  1)/v, 2) (9) 

and with C 1 and C 2 constant. From this result, by using the formalism 
of continuous-time random walk, (23) it can be shown that the 
Laplace-Fourier transform of the probability P(r, t), p(k, u) for k >> u and 
#v > 2, is given by 

1 
p(k, u) oc ~ (10) 

u + Ck = 

This shows that our numerical results are in agreement with the theory 
developed in ref. 22, because (10) is the Laplace-Fourier transform of a 
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L6vy probability distribution of order ~ =  min((pv-1) /v ,  2). In Fig. 2 we 
show as a full line this theoretical dependence between the parameter c~ and 
the control parameter /z for v=  1.5 [Eq. (9)]. The agreement between 
theory and numerical results is remarkable even if the decrease of c~ is con- 
siderably smoother than theoretically expected in the transition between 
the Gaussian (c~ = 2) and L6vy (e < 2) regimes. It is worth noting that we 
determine the parameter, e by investigating the central part, P(0, t), of the 
probability distribution; due to this our technique gives a higher accuracy 
with respect to the analyses performed by investigating the wings of the 
probability distribution, especially for analyses of sets of realizations that 
are moderately small. Moreover, our numerical observations about the 
convergence of a L6vy walk on a L6vy flight are also in agreement with the 
theoretical predictions presented in the literature(ZZ~; in support of this 
statement we recall that (10) is valid under the assumption k ~ u .  This 
condition is verified for a wider interval of the variable k for longer times. 

3. AMPLIFIED CLIMBING-SINE MODEL 

In this section we present a study of the time evolution of the prob- 
ability distribution P(r, t) of a chaotic model, the amplified climbing-sine 
map. (9'24~ The investigated map generates a diffuse process with the 
variance growing asymptotically like t m with m >/1. This chaotic model 
shows enhanced diffusion for wide ranges of the control parameters. An 
enhanced diffusion behavior, characteristic of turbulent diffusion, can then 
also be generated by an intermittent dynamical chaotic mechanism. ~ We 
focus our attention on the time evolution of the probability distribution 
P(r, t) to check if enhanced diffusion is associated with a L6vy distribution 
in this chaotic model. Below we will show that the probability distribution 
is leptokurtic. In addition the shape of the probability distribution differs 
from the L6vy shape greatly in the region close to the origin P(r~O,  t). 
The one-dimensional amplified climbing-sine map is 

rt+ 1 = r t - k  a [rtlP sin(r,) (11) 

where a and p are the control parameters. As in previous studies, (9':4) in 
our simulations the control parameter p falls in the range 0 < p < 2/3 and 
we choose the control parameter a higher than the critical value for the 
onset of diffusion and lower than the value at which the flip bifurcation 
takes place in the first cells (-2re, 0) and (0, 2~). (9) Different realizations of 
the process are obtained by selecting randomly the initial condition r o 
within the interval [--0.5, 0.5]. In Fig. 6 we show a single realization of the 
process obtained for a = 3.75 and p = 0.5. In the figure we also show an 



730 Mantegna 

1.8 
10  

e -  

1 . 2  

o - 2̀0 4 ~  e-- 

o I 2 
0.6 Log(t) 

-0.6 

time (Thousands) 

Fig. 6. Amplified climbing-sine map, single realization of the chaotic time evolution charac- 
terized by a = 3.75 and p = 0.5. An intermittent behavior of the time evolution is evident. In 
the inset we show the time evolution of the mean square displacement of the process obtained 
by analyzing an ensemble of 104 different realizations for the same values of the control 
parameters. From the data we obtain a diffusion exponent m = 1.99 by best linear fitting. 

inset where we report the time dependence of the mean square displace- 
ment <r2(t)> of the process for the same values of  the control parameters 
in a log-log plot. By performing a best linear fitting of these data we obtain 
m =  1.99, in full agreement with previous numerical and theoretical 
investigations, m) We study the time evolution of the probability distribution 
P(r, t) after checking the presence of enhanced diffusion for each selected 
couple of control parameters.  In Figs. 7 and 8 we show the time evolution 
of P(r, t) obtained by setting a = 3.75 and p = 0.5. Figure 7 shows a linear 
plot of four P(r, t) characterized by t - -10 ,  30, 100, and 300. From the 
figure it is hard to isolate the different curves; it is clear that the central 
peak remains almost constant in time over a very long period. In Fig. 8a 
we present the logarithm of the probabil i ty distributions obtained for the 
same values of the control parameters  to point out the behavior of the 
wings of the probabili ty distributions. From the plot we note that the prob- 
ability is enhanced in the wings for longer times. Roughly speaking, we can 
state that this behavior is a manifestation on the distribution function of 
the observed enhanced diffusion of the variance of the process. In support  
of this qualitative statement, our simulation shows that the wings of the 
P(r, t) distributions maintain their similarity in shape after a sealing 
performed by using 

cm/2p(cm/Zr, t)= P(r, tx) (12) 
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Fig. 7. Probability distributions for the amplified climbing-sine map (a = 3.75 and p = 0.5) 
obtained at different times (t= 10, 30, 100, and 300). The distributions are obtained by 
analyzing an ensemble of 5 x 10 4 different realizations. The probability distributions maintain 
almost the same shape for the investigated time intervals in the region close to the origin. In 
fact, except for the exact value at the origin, which decreases slowly, it is hard to resolve the 
four curves in the figure. 

where c=t/ t  1. It is worth noting either the formal analogy between 
Eq. (12) and Eq. (6) or the linear dependence of the scaling exponent m/2 
on the diffusion exponent m. In Fig. 8b we present the same family of 
distributions already plotted in Fig. 8a by using the scaled units r~ = r/t m/2 
and P,(r,, t)= tm/ZP(rs, t). In addition to the curves plotted in Fig. 8a, in 
Fig. 8b we also plot the probability distributions obtained for t = 1, 3, and 
10. In the scaling procedure, the scaling exponent m/2 is set to 0.995 as the 
diffusion exponent m, obtained by studying the time evolution of the mean 
square displacement of the process as show in the inset of Fig. 6, is equal 
to 1.99 for the selected values of the control parameters ( a =  3.75 and 
p = 0.5). In the figure, after the scaling, the wings of the scaled distributions 
coincide, within the statistical errors, for t t> 10. On the other hand, in spite 
of this, the central part of the probability distribution does not maintain 
similarity in shape after scaling (Fig. 7). 

To summarize the results of this section, we state that the probability 
distributions of the amplified climbing-sine map are leptokurtic with a 
pronounced peak close to the origin and with wings which maintain 
similarity in shape after an appropriate scaling [Eq. (12)]. 



732 Mantegna 

t=lO0 

-2 

-3 

-4 

-5 

-6 

-7 

Q3 o, 

-0.5 0 0.5 
r (Thousands) 

(a) 

v 

O3 
0 

- J  

0 

-1 

-2 

-3 

-4 

-5 
-16 -12 -8 -4 0 4 8 12 

m/2=0.995 ~ t=l 

16 

rs 

(b) 

Fig. 8. Amplified climbing-sine map characterized by a = 3.75 and p = 0.5. (a) Logarithmic 
plot of the probability distributions obtained for different times (t = 30, 100, 300, and 1000). 
The wings of distributions are strongly enhanced for longer times. (b) The same probability 
distributions as in (a) with in addition the probability distributions obtained for t = 1, 3, and 
10. In this plot the probability distributions are shown in the scaled units r s=  r/t m/2 and 
P,(r,,  t )=  tm/2p(r~, t). We use as scaling exponent  the value m/2 = 0.995 because the diffusion 
exponent is equal to 1.99 for the selected values of the control parameters (Fig. 6). The wings 
of the scaled probability distributions coincide for t t> 10, whereas the central part of the 
probability distribution does not show similarity after scaling. 
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4.  D I S C U S S I O N  

In this last section we compare the two processes by pointing out 
analogies and differences. Both processes present a power-law time 
dependence for the time evolution of the mean square displacement. From 
this point of view both models could be used, for example, to model 
turbulence data. On the other hand, a detailed study of the probability dis- 
tribution P(r, t) shows differences. In particular, even if we set the control 
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Fig. 9. One-dimensional Lrvy walk ( # =  1.8 and v =  1.5). (a) P(r, t) investigated in the 
ranges -- 150 ~< r ~< 150 and 10 ~< t ~< 310 (statistical ensemble of 5 x 104 realizations). In this 
figure all the scale units are the same as in Fig. 10a to allow a direct comparison between the 
two figures. (b) The contour line plot of the time evolution of P(r, t). In the investigate spatial 
and temporal ranges the contour lines of simulations (noisy lines) are quite close to the 
contour lines of a Lrvy flight distributions of order c~ = 1.22 (smooth lines in the plot). 
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parameters to obtain nearly the same value of the diffusive exponent m for 
both processes [for example, v = 1.5 and # = 1.8 (m = 2.05) for the Lrvy walk 
and a =  3.75 and p =0.5 (m = 1.99) for the amplified climbing-sine map], 
the probability of returning to the origin P(0, t) is completely different in 
the two cases. Moreover, a finer analysis of P(r, t) shows that the difference 
is recognizable on a wide spatial region. In Figs. 9 and 10 we present the 
time evolution of the probability distributions P(r, t) and the related 
contour line plots obtained for wide spatial and temporal ranges for a Lrvy 
walk (v= 1.5 and /~= 1.8) and for the amplified climbing-sine model 
(a = 3.75 and p = 0.5), respectively. In Figs. 9a and 10a we use the same 
scale for the z axis to allow a direct comparison of the two processes. It is 
evident that the behavior is deeply different in the two cases; for the Lrvy 
walk we observe that the time evolution of the probability distribution is 
very close to the corresponding Lrvy flight (e = 1.22 obtained with the pro- 
cedure sketched in Fig. 4) for the scanned spatial range, while the amplified 
climbing-sine map shows a strong central peak and a fine structure. The 
difference is even more evident if we analyze the contour lines for both 
simulations. For the Lrvy walk (Fig. 10a) contour lines are closed loops 
passing through the origin and symmetric with respect to the time axis. 
Moreover, the contour lines of the process are quite close to the contour 
lines observed for the corresponding Lrvy flights (~=1.22) in the 
investigated spatial ( - 150 ~< r ~< 150) and temporal (10 ~< t ~< 310) intervals 
(smooth lines in the figure). On the other hand, for the amplified climbing- 
sine map the contour lines are all parallel to the time axis in the same 
investigated intervals (Fig. 10b). This fine structure reveals the chaotic 
nature of the model. (25) 

A further difference concerns the relation between the scaling and the 
diffusion exponents. For the amplified climbing-sine map the scaling expo- 
nent is found to be m/2 and then it is directly proportional to the diffusion 
exponent m. Lrvy walks show a different behavior; in fact, for Lrvy walks 
the two parameters are different and unrelated in the L~vy regime (a < 2). 
We observe that the diffusion exponent m obtained from numerical simula- 
tions (Fig. 2) is close to the value 

m = {127/~v+ 2 2v 

for pv>( l  + 2v) 
for 1 + 2 v > # v > 2  

for 2>/~v> 1 

(13) 

theoretically obtained in refs. 2 and 22, whereas the scaling exponent 
is equal to l/a, i.e., is the inverse of the order of the L6vy distribution 
that well describes the central part of the probability distribution of the 
process. From numerical and theoretical investigations we know that 
c~ = min((/ lv- 1)/v, 2) in the appropriate ranges of the control parameters 
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Fig. 10. Amplified climbing-sine map (a = 3.75 and p = 0.5). (a) P(r, t) investigated for the 
same spatial and temporal ranges as for Fig. 9a (statistical ensemble of 5 • 104 realizations). 
The time evolution of P(r, t) greatly differs from the one displayed for L6vy walks (Fig. 9a). 
It is leptokurtik, with a central peak slowly decreasing in time. (b) The contour line plot of  
P(r, t). In this plot we observe that the contour lines are parallel to the time axis, a behavior 
completely different from the one observed in L6vy walks (Fig. 9b). 
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(v > 1/2 and  # >  2/v). By c o m p a r i n g  Eq. (13) and  Eq. (9) we can conclude  
that  the diffusion and  scal ing exponents  are  re la ted  only  in the Gauss i an  
regime (c~ = 2 and  m = 1), where  we can wri te  m / 2  = l / a ,  while in the L6vy 
regime (c~ < 2 and  rn >/1 ) they are  different a n d  unrela ted.  

O u r  results  on the shape  of  the central  p a r t  of  the p robab i l i t y  d is t r ibu-  
tions and  on the r e l a t ion  be tween  scaling a n d  diffusive exponents  for the 
two models  show tha t  i t  is poss ib le  to d i sc r imina te  between the two models  
if one per forms  a careful  e x a m i n a t i o n  of the t ime evo lu t ion  of  the p robab i l -  
ity d i s t r ibu t ion  even for  a set with a finite n u m b e r  of  real iza t ions  of  the 
process. 
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